Systemic Effects of Ulna Loading in Male Rats During Functional Adaptation

نویسندگان

  • Susannah J Sample
  • Ryan J Collins
  • Aliya P Wilson
  • Molly A Racette
  • Mary Behan
  • Mark D Markel
  • Vicki L Kalscheur
  • Zhengling Hao
  • Peter Muir
چکیده

Functional skeletal adaptation is thought to be a local phenomenon controlled by osteoctyes. However, the nervous system also may have regulatory effects on adaptation. The aim of this study was to determine the effects of loading of a single bone on adaptation of other appendicular long bones and whether these responses were neuronally regulated. Young male Sprague-Dawley rats were used. The right ulna was loaded to induce a modeling response. In other rats, a second regimen was used to induce bone fatigue with a mixed modeling/remodeling response; a proportion of rats from each group received brachial plexus anesthesia to induce temporary neuronal blocking during bone loading. Sham groups were included. Left and right long bones (ulna, humerus, tibia, and femur) from each rat were examined histologically 10 days after loading. In fatigue- and sham-loaded animals, blood plasma concentrations of TNF-α, RANKL, OPG, and TRAP5b were determined. We found that loading the right ulna induced an increase in bone formation in distant long bones that were not loaded and that this effect was neuronally regulated. Distant effects were most evident in the rats that received loading without bone fatigue. In the fatigue-loaded animals, neuronal blocking induced a significant decrease in plasma TRAP5b at 10 days. Histologically, bone resorption was increased in both loaded and contralateral ulnas in fatigue-loaded rats and was not significantly blocked by brachial plexus anesthesia. In young, growing male rats we conclude that ulna loading induced increased bone formation in multiple bones. Systemic adaptation effects were, at least in part, neuronally regulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses i...

متن کامل

Functional Adaptation in Female Rats: The Role of Estrogen Signaling

BACKGROUND Sex steroids have direct effects on the skeleton. Estrogen acts on the skeleton via the classical genomic estrogen receptors alpha and beta (ERα and ERβ), a membrane ER, and the non-genomic G-protein coupled estrogen receptor (GPER). GPER is distributed throughout the nervous system, but little is known about its effects on bone. In male rats, adaptation to loading is neuronally regu...

متن کامل

Role of Calcitonin Gene-Related Peptide in Bone Repair after Cyclic Fatigue Loading

BACKGROUND Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo...

متن کامل

Contribution of the Nucleus Cuneiformis to the Antinociceptive Effects of Systemic Morphine on Inflammatory Pain in Rats

Introduction: The role of midbrain reticular formation, which includes the nucleus cuneiformis (NCF), as a crucial antinociceptive region in descending pain modulation has long been investigated. In this study, we tried to highlight the role of NCF in morphine-induced antinociception in formalin-induced pain model in rats. Methods: A total of 201 male Wistar rats weighing 260-310 g were used in...

متن کامل

Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels.

PTH and mechanical loading might act synergistically on bone formation. We tested the in vivo effect of the L-type voltage-sensitive calcium channel (VSCC) blocker, verapamil, on bone formation induced by human PTH-(1-34) (PTH) injection with or without mechanical loading. Adult rats were divided into eight groups: vehicle, verapamil, PTH, or verapamil plus PTH with or without mechanical loadin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010